Муниципальное образовательное учреждение Бараитская средняя общеобразовательная школа № 8

Утверждаю:

И. о. директора школы

Е. Н. Дубовская

Приказ № от

2018 г.

Рабочая программа

учебного предмета «Химия»

8 класс

Дистанционный учитель: Идт О. В. Тьютор: Красненко И. Н.

с. Бараит 2018 - 2019 г

Аннотация

Рабочая программа по предмету «Химия» (базовый уровень) на ступень основного общего образования (8-9 кл) Срок действия: 2018 – 2019гг.

Рабочая программа по химии построена на основе:

- 1. Закона «Об образовании РФ»
- 2. Фундаментального ядра содержания основного общего образования,
- 3. Федерального государственного образовательного стандарта основного общего образования,
- 4. Программа основного общего образования по химии. 8—9 классы Авторы: О.С. Габриэлян, А.В. Купцова
- 5. Программы духовно-нравственного развития и воспитания личности,
- 6. Концепции духовно-нравственного развития
- 7. Основная образовательная программа начального общего и основного общего образования образовательного учреждения
- 8. Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного образовательного стандарта

Основные цели изучения химии в школе:

- формирование у учащихся химической картины мира как органической части его целостной естественнонаучной картины
- развитие познавательных интересов, интеллектуальных и творческих способностей учащихся в процессе изучения ими химической науки и ее вклада в современный научно-технический прогресс;
- формирование важнейших логических операций мышления (анализ, синтез, обобщение, конкретизация, сравнение и др.) в процессе познания системы важнейших понятий, законов и теорий о составе, строении и свойствах химических веществ;
- воспитание убежденности в том, что применение полученных знаний и умений по химии является объективной необходимостью для безопасной работы с веществами и материалами в быту и на производстве;
- проектирование и реализация выпускниками основной школы личной образовательной траектории: выбор профиля обучения в старшей школе или профессионального образовательного учреждения;
- овладение ключевыми компетенциями (учебно-познавательными, информационными, ценностно-смысловыми, коммуни-кативными).

Перечень учебно – методического обеспечения

- 1. Химия. 8 класс. Учебник (автор О. С. Габриелян). 288 с. Методическое пособие. 8—9 классы (авторы О. С. Габриелян, А. В. Яшукова). 224 с.
- 2. Настольная книга учителя. 8 класс (авторы О. С. Габриелян, Н. П. Воскобойникова, А. В. Яшукова). 400 с.

ТРЕБОВАНИЯ К ПЛАНИРУЕМЫМ РЕЗУЛЬТАТАМ ИЗУЧЕНИЯ ПРОГРАММЫ

Рабочая программа по химии направлена на достижение обучающимися следующих

Личностные результаты обучения

Учащийся должен:

знать и понимать: основные исторические события, связанные с развитием химии и общества; достижения в области химии и культурные традиции (в частности, научные традиции) своей страны; общемировые достижения в области химии; основы здорового образа жизни; правила поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; социальную значимость и

содержание профессий, связанных с химией; основные права и обязанности гражданина (в том числе учащегося), связанные с личностным, профессиональным и жизненным самоопределением;

испытывать: чувство гордости за российскую химическую науку и уважение к истории ее развития; уважение и принятие достижений химии в мире; уважение к окружающим (учащимся, учителям, родителям и др.) — уметь слушать и слышать партнера, признавать право каждого на собственное мнение и принимать решения с учетом позиций всех участников; самоуважение и эмоционально-положительное отношение к себе;

признавать: ценность здоровья (своего и других людей); необходимость самовыражения, самореализации, социального признания; осознавать: готовность (или неготовность) к самостоятельным поступкам и действиям, принятию ответственности за их результаты; готовность (или неготовность) открыто выражать и отстаивать свою позицию и критично относиться к своим поступкам;

проявлять: доброжелательность, доверие и внимательность к людям, готовность к сотрудничеству и дружбе, оказанию помощи нуждающимся в ней; устойчивый познавательный интерес, инициативу и любознательность в изучении мира веществ и реакций; целеустремленность и настойчивость в достижении целей, готовность к преодолению трудностей; убежденность в возможности познания природы, необходимости разумного использования достижений науки и технологий для развития общества;

уметь: устанавливать связь между целью изучения химии и тем, для чего она осуществляется (мотивами); выполнять прогностическую самооценку, регулирующую активность личности на этапе ее включения в новый вид деятельности, связанный с началом изучения нового учебного предмета — химии; выполнять корригирующую самооценку, заключающуюся в контроле за процессом изучения химии и внесении необходимых коррективов, соответствующих этапам и способам изучения курса химии; строить жизненные и профессиональные планы с учетом конкретных социально-исторических, политических и экономических условий; осознавать собственные ценности и их соответствие принимаемым в жизни решениям; вести диалог на основе равноправных отношений и взаимного уважения; выделять нравственный аспект поведения и соотносить поступки (свои и других людей) и события с принятыми этическими нормами; в пределах своих возможностей противодействовать действиям и влияниям, представляющим угрозу жизни, здоровью и безопасности личности и общества.

Метапредметных результатов: 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности; 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов; 3) умение генерировать идеи и определять средства, необходимые для их реализации; 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике; 5) использование различных источников для получения химической информации.

Предметных результатов:

Выпускники научатся:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории;

- различать химические и физические явления;
- называть химические элементы;
- определять состав веществ по их формулам;
- определять валентность атома элемента в соединениях;
- определять тип химических реакций;
- называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
- составлять формулы бинарных соединений;
- составлять уравнения химических реакций;
- соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
- получать, собирать кислород и водород;
- распознавать опытным путем газообразные вещества: кислород, водород;
- раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
- характеризовать физические и химические свойства воды;
- раскрывать смысл понятия «раствор»;
- вычислять массовую долю растворенного вещества в растворе;
- приготовлять растворы с определенной массовой долей растворенного вещества;
- называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
- определять принадлежность веществ к определенному классу соединений;
- составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать, опытным путем, растворы кислот и щелочей по изменению окраски индикатора;
- характеризовать взаимосвязь между классами неорганических соединений;

- раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
- определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление», «восстановление»;
- определять степень окисления атома элемента в соединении;
- раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
- составлять полные и сокращенные ионные уравнения реакции обмена;
- определять возможность протекания реакций ионного обмена;
- проводить реакции, подтверждающие качественный состав различных веществ;
- определять окислитель и восстановитель;
- составлять уравнения окислительно-восстановительных реакций;
- называть факторы, влияющие на скорость химической реакции;
- классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;
- распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;

- грамотно обращаться с веществами в повседневной жизни
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

СОДЕРЖАНИЕ ПРОГРАММЫ

Особенности содержания обучения химии в основной школе обусловлены спецификой химии как науки и поставленными задачами. Основными проблемами химии являются изучение состава и строения веществ, зависимости их свойств от строения, получение веществ с заданными свойствами, исследование закономерностей химических реакций и путей управления ими в целях получения веществ, материалов, энергии. Поэтому в программе по химии нашли отражение основные содержательные линии:

- вещество знания о составе и строении веществ, их важнейших физических и химических свойствах, биологическом действии;
- химическая реакция знания об условиях, в которых проявляются химические свойства веществ, способах управления химическими процессами;

- применение веществ знания и опыт практической деятельности с веществами, которые наиболее часто употребляются в повседневной жизни, широко используются в промышленности, сельском хозяйстве, на транспорте;
- язык химии система важнейших понятий химии и терминов, в которых они описываются, номенклатура неорганических веществ, то есть их названия (в том числе и тривиальные), химические формулы и уравнения, а также правила перевода информации с естественного языка на язык химии и обратно.

В процессе освоения программы курса химии для основной школы учащиеся овладевают умениями ставить вопросы, наблюдать, объяснять, классифицировать, сравнивать, проводить эксперимент и интерпретировать выводы на его основе, определять источники химической информации, получать и анализировать ее, а также готовить на этой основе собственный информационный продукт, презентовать его и вести дискуссию,

Данная программа курса химии для основной школы учитывает первоначальных представлений, полученных учащимися в начальной школе при изучении окружающего мира, носит общекультурный характер

Изучение данной программы позволяет формировать у учащихся не только целостную картину мира, но и пробуждать у них эмоционально-ценностное отношение к изучаемому материалу, создавать условия для формирования системы ценностей, определяющей готовность: выбирать определенную направленность действий; действовать определенным образом; оценивать свои действия и действия других людей по определенным ценностным критериям.

Значительное место в содержании курса отводится химическому эксперименту. Он позволяет сформировать у учащихся специальные предметные умения работать с химическими веществами, выполнять простые химические опыты, научить их безопасному и экологически грамотному обращению с веществами в быту и на производстве.

Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но и контроля качества их сформированности.

Курс химии 8 класса изучается в два этапа.

Первый этап — химия в статике, на котором рассматриваются состав и строение атома и вещества. Его основу составляют сведения о химическом элементе и формах его существования — атомах, изотопах, ионах, простых веществах и их важнейших соединениях (оксидах и других бинарных соединениях, кислотах, основаниях и солях), строении вещества (типологии химических связей и видах кристаллических решеток).

Второй этап — химия в динамике, на котором учащиеся знакомятся с химическими реакциями как функцией состава и строения участвующих в химических превращениях веществ и их классификации. Свойства кислот, оснований и солей сразу рассматриваются в свете теории электролитической диссоциации. Кроме этого, свойства кислот и солей характеризуются также и свете окислительновосстановительных процессов.

В курсе 9 класса вначале обобщаются знания учащихся по курсу 8 класса, апофеозом которого является Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Кроме того, обобщаются сведения о химических реакциях и их классификации — знания об условиях, в которых проявляются химические свойства веществ, и способах управления химическими процессами. Затем рассматриваются общие свойства металлов и неметаллов. Приводятся свойства щелочных и щелочноземельных металлов и галогенов (простых веществ и соединений галогенов), как наиболее ярких представителей этих классов элементов, и их сравнительная характеристика. В курсе подробно рассматриваются состав, строение, свойства, получение ІІ применение отдельных, важных в хозяйственном отношении веществ, образованных элементами 2—3-го периодов.

8 КЛАСС (2ч в неделю, всего 68ч) Введение (4ч)

Предмет химии. Методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление его результатов.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Роль отечественных ученых в становлении химической науки — работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Проведение расчетов массовой доли химического элемента в веществе на основе его формулы.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы. Периодическая система как справочное пособие для получения сведений о химических элементах.

Демонстрации. 1. Модели (шаростержневые и Стюарта— Бриглеба) различных простых и сложных веществ. 2. Коллекция стеклянной химической посуды. 3. Коллекция материалов и изделий из них на основе алюминия. 4. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты. 1. Сравнение свойств твердых кристаллических веществ и растворов. 2. Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Тема 1. Атомы химических элементов (9 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны, нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома — образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных уровней атомов химических элементов малых периодов. Понятие о завершенном электронном уровне.

Периодическая система химических элементов Д. И. Менделеева и строение атомов — физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи. Взаимодействие атомов элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Ковалентная полярная связь. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Составление формул бинарных соединений по валентности. Нахождение валентности по формуле бинарного соединения.

Взаимодействие атомов металлов между собой — образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева (различные формы).

Лабораторные опыты. 3. Моделирование принципа действия сканирующего микроскопа. 4. Изготовление моделей молекул бинарных соединений. 5. Изготовление модели, иллюстрирующей свойства металлической связи.

Тема 2. Простые вещества (6 ч)

Положение металлов и неметаллов в Периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы (железо, алюминий, кальций, магний, натрий, калий). Общие физические свойства металлов Важнейшие простые вещества-неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Молекулы простых веществ-неметаллов — водорода, кислорода, азота, галогенов. Относительная молекулярная масса.

Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора, олова. Металлические и неметаллические свойства простых веществ. Относительность этого понятия.

Число Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы измерения количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «число Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора, Некоторые металлы и неметаллы с количеством вещества 1 моль. Молярный объем газообразных веществ.

Лабораторные опыты. 6. Ознакомление с коллекцией металлов. 7. Ознакомление с коллекцией неметаллов.

Тема 3. Соединения химических элементов (14 ч)

Степень окисления. Сравнение степени окисления и валентности. Определение степени окисления элементов в бинарных соединениях. Составление формул бинарных соединений, общий способ их названий.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и пр. Составление их формул.

Бинарные соединения неметаллов: оксиды, летучие водородные соединения, их состав и названия. Представители оксидов: вода, углекислый газ, негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие об индикаторах и качественных реакциях.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная, азотная. Понятие о шкале кислотности (шкала рН). Изменение окраски индикаторов.

Соли как производные кислот и оснований, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Кислотно-щелочные индикаторы, изменение их окраски в различных средах. Универсальный индикатор и изменение его окраски в различных средах. Шкала рН.

Лабораторные опыты. 8. Ознакомление с коллекцией оксидов. 9. Ознакомление со свойствами аммиака. 10. Качественная реакция на углекислый газ. 11. Определение рН растворов кислоты, щелочи и воды. 12. Определение рН лимонного и яблочного соков на срезе плодов. 13. Ознакомление с коллекцией солей. 14. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей кристаллических решеток. 15. Ознакомление с образцом горной породы.

Тема 4. Изменения, происходящие с веществами (12 ч)

Понятие явлений, связанных с изменениями, происходящими с веществом.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, фильтрование и центрифугирование.

Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Выделение теплоты и света — реакции горения. Понятие об экзо- и эндотермических реакциях.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Представление о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции, обратимые и необратимые реакции. Реакции замещения. Ряд активности металлов, его использование для прогнозирования возможности протекания реакций между металлами и кислотами, реакций вытеснения одних металлов из растворов их солей другими металлами. Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Условие взаимодействия оксидов металлов и неметаллов с водой. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с металлами. Реакции обмена — гидролиз веществ.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка иода или бензойной кислоты; в) растворение окрашенных солей; г) диффузия душистых веществ с горящей лампочки накаливания.

Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д)взаимодействие оксида меди (II) с серной кислотой при нагревании; е)разложение перманганата калия; ж) разложение пероксида водорода с помощью диоксида марганца и каталазы картофеля или моркови; з)взаимодействие разбавленных кислот с металлами.

Лабораторные опыты. 16. Прокаливание меди в пламени спиртовки. 17. Замещение меди в растворе хлорида меди (II) железом.

Тема 5. Практикум 1. Простейшие операции с веществом (3 ч)

1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами. 2. Признаки химических реакций. 3. Приготовление раствора сахара и расчет его массовой доли в растворе

Тема 6. Растворение. Растворы. Свойства растворов электролитов (18 ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциаций электролитов с различным характером связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Реакции обмена, идущие до конца. Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот

с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с солями. Использование таблицы растворимости для характеристики химических свойств оснований. Взаимодействие щелочей с оксидами неметаллов.

Соли, их диссоциация и свойства в свете теории электролитической диссоциации. Взаимодействие солей с металлами, особенности этих реакций. Взаимодействие солей с солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и свойствах.

Генетические ряды металла и неметалла. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции.

Определение степеней окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете окислительно-восстановительных реакций.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Движение окрашенных ионов в электрическом поле. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты. 18. Взаимодействие растворов хлорида натрия и нитрата серебра. 19. Получение нерастворимого гидроксида и взаимодействие его с кислотами. 20. Взаимодействие кислот с основаниями. 21. Взаимодействие кислот с оксидами металлов. 22. Взаимодействие кислот с металлами. 23. Взаимодействие кислот с солями. 24. Взаимодействие щелочей с кислотами. 25. Взаимодействие шелочей с оксидами неметаллов. 26. Взаимодействие шелочей с солями. 27. Получение и свойства нерастворимых оснований. 28. Взаимодействие основных оксидов с кислотами. 29. Взаимодействие основных оксидов с водой. 30. Взаимодействие кислотных оксидов с водой. 32. Взаимодействие солей с кислотами. 33. Взаимодействие солей с шелочами. 34. Взаимодействие солей с солями. 35. Взаимодействие растворов солей с металлами.

Тема 7. Практикум 2. Свойства растворов электролитов (1 ч)

1. Решение экспериментальных задач.

Повторение. Итоговый контроль знаний за год (1 ч)

№	Содержание (разделы, темы)	Дата 8а,б,в класс		Причина корректировки			
		По плану	По факту				
Вве	Введение (7 часов)						
1	Правила техники безопасности при работе в химическом кабинете.						
2	Химия – часть естествознания.						
3	Предмет химии. Вещества.						
4	Превращения веществ. Роль химии в жизни человека.						
5	Краткий очерк истории развития химии.						
6	Периодическая система химических элементов Д. И. Менделеева. Знаки						
	химических элеметов.						
7	Химические формулы. Относительная атомная и молекулярная массы.						
Тем	а 1. Атомы химических элементов (9 часов)						
8	Основные сведения о строении атомов.						
9	Изменения в составе ядер атомов химических элементов. Изотопы.						
10	Строение электронных оболочек атомов.						
11	Изменение числа электронов на внешнем энергетическом уровне атомов						
	химических элементов.						
12	Взаимодействие атомов элементом-наметалллов между собой.						
13	Ковалентная полярная химическая связь.						
14	Металлическая химическая связь.						
15	Обобщение и систематизация знаний по теме «Атомы химических элементов»						
16	Контрольная работа №1 «Атомы химических элементов»						
Тем	Тема 2. Простые вещества (7 часов)						
17	Анализ контрольной работы. Простые вещества-металлы						
18	Простые вещества-неметаллы.						
19	Количество вещества						
20	Молярный объем газов .						
21	Решение задач с использованием понятий «количество вещества», «постоянная						
	Авогадро», «молярная масса», «молярный объем газов»						
22	Обобщение и систематизация знаний по теме «Простые вещества».»						
23	Контрольная работа №2 «Простые вещества						
Тем	а 3. Соединения химических элементов (14 часов)						
24	Анализ контрольной работы Степень окисления.						
25	Важнейшие классы бинарных соединений – оксиды и летучие водородные						

	соединения.		
26	Основания.		
27	Кислоты. Работа над проектом по теме «Кислоты в природе и дома»		
28	Соли.		
29	Обобщение знаний о классификации сложных неорганических веществ.		
30	Кристаллические решетки.		
31	Чистые вещества и смеси.		
	Работа над проектом «Способы разделения смесей, применяемые в быту»		
32	Массовая и объемная доли компонентов в смеси (раствора).		
33	Решение задач на тему «Массовая и объемная доля смеси».		
34	Решение задач на тему «Массовая и объемная доля раствора».		
35	Практическая работа №2 «Приготовление раствора сахара и расчет его массовой		
	доли в растворе». Текущий инструктаж		
36	Обобщение и систематизация знаний по теме «Соединения химических элемен-		
	TOB».		
37	Контрольная работа №3 «Соединения химических элементов».		
	а 4. Изменения, происходящие с веществами (14 часов)		
38	Анализ контрольной работы. Физические явления в химии.		
39	Практическая работа №3 «Наблюдения за изменениями, происходящие с		
	горящей свечой». Текущий инструктаж		
40	Химические реакции.		
41	Практическая работа №4 «Признаки химической реакции». Текущий		
	инструктаж		
10			
42	Химические уравнения.		
43	Составление уравнений химических реакций.		
44	Расчеты по химическим уравнениям.		
4.5			
45	Реакции разложения.		
46	Реакции соединения.		
47	Реакции замещения.		
48	Реакции обмена.		
49	Типы химических реакций на примере свойств воды.		
50	Обобщение и систематизация знаний по теме «Изменения, происходящие с		
	веществами».		

51	Контрольная работа № 4 «Изменения, происходящие с веществами»					
Тем	Тема 5. Растворение. Растворы. Свойства растворов электролитов (17 часов)					
52	Анализ контрольной работы. Растворение. Растворимость веществ в воде.					
53	Электролитическая диссоциация					
54	Основные положения теории электролитической диссоциации					
55	Ионные уравнения.					
56	Упражнения в составлении полных и сокращенных ионных уравнений.					
57	Кислоты, их классификация и свойства.					
58	Основания, их классификация и свойства.					
59	Оксиды, их классификация.					
60	Соли, классификация и свойства.					
61	Генетическая связь между классами неорганических веществ.					
62	Окислительно-восстановительные реакции.					
63	Упражнения в составлении окислительно-восстановительных реакций.					
64	Практическая работа №5 «Решение экспериментальных задач». Текущий					
	инструктаж					
65	Обобщение и систематизация знаний по курсу химии за 8 класс.					
66	Обобщение и систематизация знаний по курсу химии за 8 класс.					
67	Итоговая контрольная работа.					
68	Анализ итоговой контрольной работы.					
			Итого: 68 часа/год			